FRICTION OF FLUID FLOW AGAINST THE END-FACE SURFACES
OF VORTEX CHAMBERS
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In order to estimate momentum losses in vortex chambers, it is necessary to have information about the
turbulent friction of the rotating flow against the surface perpendicular to the axis of rotation. In hydraulic
calculations, a quadratic friction law is often used:

T = gpuz/z, (1)

where 7 is the fangential stress at the wall; p, density of the fluid; u, relative velocity of the flow around the
surface; and £, coefficient of friction. Recommendations for the choice of the latter are very contradictory
and do not directly cencern the object of our investigation. For this reason, the purpose of this paper is to
check relation {1} experimentally and to determine the coefficient ¢.

Experimental Setup. The scheme of the experimental setup is shown in Fig. 1. Es basic element is a
vortex chamber 1 with an inner diameter 350 mm and height 32 mm. Water flows into the chamber through
a slotted directing apparatus 2, which contains N millimeter slits, inclined to the radius at an angle « =60°.
The number N was varied from 18 to 87. The velocity of the water in the slits was varied from 1 to 15m/sec,
which covers the range of practical interest.

The friction of the flow against the wall is measured with a thin flat disk 3, fixed with the help of spokes
onto the shaft 4, which can rotate freely on bearings placed in the upper end face of the top. With the help of
a friction break 5, a variable braking torque, measured with the help of a dynamometer 6, can be applied to
the shaft. The following quantities are measured in the experiment: the fluid velocity in the slit vg, the angular
rotational velocity of the disk w, and the braking torque M. Preliminary experiments were conducted to find
the law governing the circular velocity distribution of the fluid in the chamber which turned out to be very close
to a potential rotation

Dy = ROUSI sin O(./r, (2)

where Ry is the radius of the chamber and r is the running radius. We note that an air cavity w1th radius
Ra < R; always appeared at the center of the flow.

Friction Law. In the case of friction of a fluid against a rotating disk, relation (1) takes the form
T = (1/2){plvy — ori(vy — or). 3

Here the modulus of the relative velocity is separated in connection with the fact that it can change gign and
the quantity 7 is assumed to be positive if the flow overtakes the disk.

The moment of the friction forces is calculated using the equation
2
M =220 | radr. )
iy

Substituting expressions (3) and (2) into (4) and assuming that ¢ = const, we obtain the relation

= (2M5)mp LRRUGY Y — 15(1 + B) + 10(1 + E) — 3(1 + Bl y > 14 (5)
M = 2nplR(1 — &) — (2I3)(1 — By + (WH)(1 — B)?l, y<1, ©)

where v = v_(R) =vgsin @ - Ry/R; £ =Ry/ Ry andy = wR/v. Inthe case y < 1, the disk rotates more slowly
than the flow, so that this case also includes a disk at rest. Inthe case y > 1, the external layers of the disk
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TABLE 1

E 05 05 05 05 05 05 07 075 075 0,75 0,75
v, mfsec 13 75 15 75 15 52 1,2 46 9,0 15 15
M,N-m 041 3,47 142 33 104 0,76 0,045 065 27 7,4 38
¥ 0 0 0 0,42 028 06 0O 0 0 0 0,36
{-1072 S 58 48 49 52 51 50 49 48 352 51 50

, |
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Fig. 2

have a local velocity exceeding Vo while the inner layers have a local velocity that is less than v,. The
freely rotating disk, for which M = 0, relates to the case y > 1. As can be seen from (5), for M =0, the
quantity y is uniquely related to the geometric parameter ¢ and does not depend either on the flow regime v
or on the coefficient of friction ¢. This property can be used to check the friction law (3) experimentally.

The characteristic y(¢£), constructed based on (5) with M = 0, is shown in Fig. 2. The experimental data,
relating to different flow rates of water, different directing apparatus, and £ = 0.375, 0.5, and 0.75, corre-
sponding with fixed R = 0.16 m to the values R; = 0.06, 0.08, and 0.12 m, are also shown in this figure. The ex-
perimental data fall quite closely, but with some spread, on the curve, so that Fig. 1 shows not the experi-
mental points themselves, but the limits of the spread. The results obtained support quite convineingly the
friction law (3), although it is evident that they are somewhat high on the average.

Coefficient of Friction. X is convenient to determine the quantity ; for a disk at rest or strongly braked,
i.e., based on Eq. (6), from which the following working relation is obtained:

L = M/{2np*R3[(1 — &) — (2/3)(1—E3y + (1/5)(1 — E*1).

Selected results obtained by analyzing the measurements are presented in Table 1, which gives an idea of the
average value and spread of this quantity. An analysis of a large amount of experimental data permits recom-
mending the value ¢ = (5 + 0.3) » 1073,

We note that the quantity ¢ =5 + 107 in Eq. (1) was recommended in [1] as a rough approximation even
for friction of gas—fluid mixtures against a golid wall, but only with an appropriate choice of density of the
mixture.
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