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In o rder  to es t imate  momentum losses  in vortex chambers ,  it is neces sa ry  to have information about the 
turbulent f r ic t ion of the rotating flow agaLust the surface perpendicular  to the axis of rotation. In hydraulic 
calculations,  a quadratic f r ic t ion law is often used: 

T = ~p u2/2, (1) 

where 7 is the tangential s t r e s s  at the wall; p ,  density of the fluid; u, relative velocity of the flow around the 
surface;  and ~, coefficient of fr ict ion.  Recommendations for  the choice of the la t ter  are  very  contradic tory 
and do not direct ly  concern the object of our  investigation. For  this reason,  the purpose of this paper  is to 
check relation (1) experimental ly  and to determine the coefficient ~. 

Experimental  Setup. The scheme of the experimental  setup is shown in Fig. 1. l~.s basic element is a 
vortex chamber  1 with an inner d iameter  350 mm and height 32 ram. Water  flows into the chamber  through 
a slotted direct ing apparatus 2, which contains N mi l l imeter  sl i ts ,  inclined to the radius at an angle ~ = 60 ~ 
The number  N was var ied  f rom 18 to 87. The velocity of the water  in the sli ts was var ied  f rom 1 to 15 m / s e c ,  
which covers  the range of pract ica l  in teres t .  

The fr ic t ion of the flow against the wall is measured  with a thin flat disk 3, fixed with the help of spokes 
onto the shaft 4, which can rotate  f ree ly  on bear ings placed in the upper end face of the top. With the help of 
a fr ict ion break  5, a variable braking torque,  measured  with the help of a dynamometer  6, can be applied to 
the shaft. The following quantities are measured  in the experiment:  the fluid velocity in the slit  v s, the angular 
rotational velocity of the disk ~0, and the braking torque M. Pre l iminary  experiments  were conducted to find 
the law governing the c i r cu la r  velocity distr ibution of the fluid in the chamber  which turned out to be very  close 
to a potential rotat ion 

% = Rovsl  sin a / r ,  (2) 

where R 0 is the radius of the chamber  and r is the running radius.  We note that an air  cavity with radius 
Ra < R 1 always appeared at the center  of the flow. 

Fr ic t ion  Law. In the ease of fr ict ion of a fluid against a rotating disk, relation (1) takes the fo rm 

T = ( l / 2 )~p l v~  - -  r - -  ~ r ) .  (3) 

Here the modulus of the relat ive velocity is separa ted  in connection with the fact  that it can change sign and 
the quantity 7 is assumed to be positive if the flow overtakes the disk. 

The moment of the fr ic t ion forces  is calculated using the equation 

R 2 

M = 2 . 2 ~  .t" r2~dr' (4) 
RI 

Substituting expressions (3) and (2) into (4) and assuming that  ~ = coast,  we obtain the relat ion 

M = ( 2 / i 5 ) g p ~ v ~ R a [ i 6 y - 1 / 2  - -  t5(t + ~) + t0(i + ~a)y _ 3(1 + ~5)y,.], y > i; (5) 

M = 2np~vaB3[(l - -  ~ )  - -  (2/3)0 -- ~a)y + (1/5)(1 -- ~5)y~], y < i, (6) 

whore v = v~(R) =Vsls in  ~ �9 R0/R; ~ = R1/R0; and y = wR/v .  In the case y < 1, the disk rotates more slowly 
than the flow, so that this case also includes a disk at res t .  In the case y > 1, the external layers  of the disk 
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have a local veloci ty exceeding v~, while the inner  layers  have a local velocity that is less than v~. The 
f ree ly  rotating disk, fo r  which M = 0, re lates  to the case y > 1. As can be seen f rom (5), fo r  M = 0, the 
quantity y is uniquely re la ted to the geometr ic  pa rame te r  $ and does not depend ei ther  on the flow regime v 
or  on the coefficient of fr ict ion ~. This proper ty  can be used to check the fr ict ion law (3) experimental ly.  

The charac te r i s t i c  y(~),  const ructed based on (5) with M = 0, is shown in Fig. 2. The experimental  data, 
relat ing to different flow ra tes  of water ,  different directing apparatus,  and ~ = 0.375, 0.5, and 0.75, c o r r e -  
sponding with fixed R = 0.16 m to the values R t = 0.06, 0.08, and 0.12 m, are also shown in this figure.  The ex-  
per imental  data fall quite closely,  but with some spread,  on the curve, so that Fig.  I shows not the exper i -  
mental  points themselves ,  but the l imits of the spread.  The resul ts  obtained support  quite convincingly the 
fr ict ion law (3), although it is evident that  they are somewhat high on the average.  

Coefficient of Fr ic t ion.  ~ is convenient to determine the quantity ~ for  a disk at r e s t  or  s trongly braked, 
i .e. ,  based on Eq. (6), f rom which the following working relat ion is obtained: 

= M / { 2 n p u = R 3 [ ( i  - -  ~ )  - -  (2/3)(i--~3)y + (i/5)(l - -  ~5)y21}. 

Selected resul ts  obtained by analyzing the measurements  are presented in Table 1, which gives an idea of the 
average value and spread  of this quantity. An analysis  of a large amount of experimental  data permi ts  r e c o m -  
mending the value ~ = (5 • 0.3) �9 10 -3. 

We note that the quantity ~ = 5 �9 10 -3 in Eq. (1) was recommended in [1] as a rough approximation even 
for  fr ict ion of gas-f lu id  mixtures  against a solid wall, but only with an appropriate  choice of density of the 
mixture.  
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